Extracting laboratory test information from biomedical text
نویسندگان
چکیده
منابع مشابه
Extracting Molecular Binding Relationships from Biomedical Text
ARBITER is a Prolog program that extracts assertions about macromolecular binding relationships from biomedical text. We describe the domain knowledge and the underspecified linguistic analyses that support the identification of these predications. After discussing a formal evaluation of ARBITER, we report on its application to 491,000 MEDLINE ~ abstracts, during which almost 25,000 binding rel...
متن کاملExtracting Higher Order Relations From Biomedical Text
Argumentation in a scientific article is composed of unexpressed and explicit statements of old and new knowledge combined into a logically coherent textual argument. Discourse relations, linguistic coherence relations that connect discourse segments, help to communicate an argument’s logical steps. A biomedical relation exhibits a relationship between biomedical entities. In this paper, we are...
متن کاملInformation extraction from biomedical text
Information extraction is the process of scanning text for information relevant to some interest, including extracting entities, relations, and events. It requires deeper analysis than key word searches, but its aims fall short of the very hard and long-term problem of full text understanding. Information extraction represents a midpoint on this spectrum, where the aim is to capture structured ...
متن کاملExtracting Financial Information from Text Documents
The majority of electronic data today is in textual form. Financial data such as articles in the Wall Street Journal are written as texts. These electronic documents contain a wealth of information but require human interpretation. For financial analysis, rapid up-to-date information is critical. Most software tools currently require data which are better structured than text (such as data in r...
متن کاملBioNoculars: Extracting Protein-Protein Interactions from Biomedical Text
The vast number of published medical documents is considered a vital source for relationship discovery. This paper presents a statistical unsupervised system, called BioNoculars, for extracting protein-protein interactions from biomedical text. BioNoculars uses graph-based mutual reinforcement to make use of redundancy in data to construct extraction patterns in a domain independent fashion. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pathology Informatics
سال: 2013
ISSN: 2153-3539
DOI: 10.4103/2153-3539.117450